Acta Cryst. (1976). A 32, 538

On the Application of Phase Relationships to Complex Structures. IX. MULTAN Failures

By Leslie Lessinger*

Department of Physics, University of York, Heslington, York YO1 5DD, England

(Received 15 September 1975; accepted 13 January 1976)

The failure of the multisolution direct-methods program MULTAN to solve six crystal structures is analysed in terms of a distinction between the general strategy and the particular tactics of solution. Consideration of the interaction between the number of large E values chosen to define the structure and the number of \sum_2 relationships among their phases, and the way in which MULTAN's choice of a partial set of \sum_2 relationships limits the achievable accuracy of phase determination, leads to the conclusion that the best tactics are to use only as many E values as necessary but as many \sum_2 relationships as possible. Different methods of calculating E values, and the use of \sum_1 phase indications, are briefly discussed. The tactic of starting with more unknown phases, its effect on phase development, and the limitations set by the strategy of independent phase permutation, are examined. Finally, it is shown that there exist structures impossible to solve with MULTAN, probably because the tangent formula itself is inadequate, causing the phases to diverge from their true values under its operation. Directions along which to seek improved future strategies are suggested.

Introduction

The multisolution method of phase determination using convergence mapping and the tangent formula which is embodied in the computer program MULTAN has been very successful in solving centrosymmetric and non-centrosymmetric crystal structures containing up to 50 or 60 atoms in the asymmetric unit. Sometimes, however, MULTAN fails; that is, no set of phases yields an E map in which all or most of the molecule, or even a recognizable fragment, appears. It is of practical importance to go back and analyse such a case after the structure has been somehow solved and try to determine whether MULTAN was capable of solving that particular structure or whether other, perhaps more powerful methods were necessary. Some results from the analyses of six structures, all of which MULTAN initially failed to solve, are presented below.

Strategy and tactics

It is useful when discussing the successes and failures of any method of crystal structure determination to draw a distinction between the general strategy of solution, that is, the theoretical basis of the method and the algorithms used, and the particular tactics employed in a given case, that is, the actual values chosen for variable parameters and the specific path along which the solution is sought. The strategy being more or less fixed, tactics may vary according to considerations set by the particular problem to be solved, computing limitations, and previous experience or rules of thumb. The full power of a general strategy can only be exploited by the use of optimum or at least good tactics; one must also have some ideas of appropriate changes in these tactics in case of failure. A schematic listing of the steps in a structure determination using MULTAN, drawing this distinction explicitly, is set forth in Table 1 (Germain & Woolfson, 1968; Germain, Main & Woolfson, 1970, 1971; Declercq, Germain, Main & Woolfson, 1973; Koch, 1974; Main, Woolfson, Lessinger, Germain & Declercq, 1974).

Since *MULTAN* was designed to make structure determination as automatic as possible, the number of tactical choices is quite small. (A number of such choices are either embedded in the programs as fixed parameters or are given default values, which the user can override.) These few choices can be crucial to the success or failure of a structure determination, but rules of thumb for good choices of the parameters are not always widely known. More importantly, the reasons for particular choices and their effects on the operation of the program have not been well appreciated.

The following discussion of tactical choices will be illustrated by the examples in Tables 2-7, which for the following six structures show the conditions of either success or failure using MULTAN, with various figures of interest associated with each case: (1) INOS, cis-inositol monohydrate (Freeman, Langs, Nockolds & Oh, 1976), (2) LITH, lithocholic acid (Arora, Germain & Declerg, 1976), (3) MINA, 2-methoxyisonitrosoacetanilide (Font-Altaba, Miravitlles, Brianso, Plana & Solans, 1976), (4) RR, 3,3-dimethyl-4,5,9,10,11, 12-hexacarboxymethyltetracyclo[7,2,1,0^{2,4},0^{2,8}]dodeca-5.7.10-triene (Declercq, Germain & Henke, 1973), (5) TPH, tetraphenylhydrazine (Hoekstra, Vos, Braun & Hornstra, 1975), (6) AZET, 3-chloro-1,3,4-triphenylazetidin-2-one (Colens, Declercq, Germain, Putzeys & Van Meerssche, 1974).

^{*} Present address: 14 Hamlin Street, Cambridge, Mass. 02141, U.S.A.

In order to prepare these tables, an extended and modified version of MULTAN was used which at each point in the procedure compares estimated or calculated quantities with their true values found by using published phases for the actual structure, possible changes of origin and/or enantiomorph from those initially defined being taken into account. In the tables which follow, phases developed by MULTANare designated PHI, published phases PUB; the number of smallest E values used to calculate the ψ_0 figure of merit was 48 for RR, 50 for all other cases; the relative weights used to calculate CFOM were always taken as 1.0; the number of large peaks saved when E maps were calculated was always $2 \times$ NAT.

Calculation of E values

The method used to calculate E values may itself be a decisive factor in the success or failure of a structure determination attempt by MULTAN, as can be seen for INOS (Table 2, case 1 vs. cases 5 and 6). E-set 1, used in the original unsuccessful attempt to solve the structure by direct methods, was calculated by the K-curve method (Karle, Hauptman & Christ, 1958) using the formula

$$|E_{\mathbf{h}}|^2 = K(s) |F_{\mathbf{h}}|^2 / \varepsilon \sum f_i^2(s)$$

where $s = \sin \theta / \lambda$. For INOS, essentially the entire molecular geometry was known beforehand, and a better way of taking this into account was used to

Table 1. Schematic listing of the steps in a structure determination using MULTAN

Strategy

(1) Compute normalized structure factors E for the entire data set with the auxiliary program *NORMAL*. Order the E values by magnitude.

(2) Choose the largest E values for phase determination by MULTAN.

(3) Find all \sum_2 relationships among the NUMB *E* values. Retain the \sum_2 relationships with the largest values of $\kappa = 2\sigma_3\sigma_2^{-3/2}|E_{\mathbf{h}}E_{\mathbf{k}}E_{\mathbf{h}-\mathbf{k}}|$.

(4) Find all \sum_{i} relationships, if any, among the NUMB *E* values. Accept phase indications with probability \geq a limit PROB.

(5) Construct a convergence map of the NSRT \sum_2 relationships. This yields a starting set of phases which comprises any accepted from \sum_1 indications, those phases used to define the origin, to which particular values are given, and a number of unknown phases assigned multiple values which are permuted. The enantiomorph is defined by an appropriate phase restriction. The rest of the convergence map defines the order in which phase determination is attempted.

(6) Determine phases using a weighted tangent formula and refine to self-consistency. Details of the slightly complicated strategy used in this subroutine (FASTAN) will not be discussed here.

(7) Rank each phase set on a combined figure of merit (CFOM) based on a weighted sum of its relative absolute figure of merit, relative ψ_0 figure of merit, and relative residual.

(8) Using auxiliary programs, compute Fourier transforms of the most promising phase sets, search for all peaks, save the highest ones, calculate distances and angles involving these, and attempt to interpret the E maps, applying the geometrical constraints of structural organic chemistry. Strategies for the efficient interpretation of E maps, and methods for completing partial structures, will not be discussed here.

Tactics

Use of as much molecular geometry as is known to compute spherically averaged molecular scattering factors.

Choice of the number of large *E* values (NUMB).

Choice of the number of \sum_2 relationships to retain (NSRT).

Choice of the \sum_{1} probability acceptance limit PROB.

Choice of the number and type of unknown phases. The user specifies that these consist of NSPEC special phases (permutations restricted to $\varphi_{SPEC}, \varphi_{SPEC} + 180^\circ) + NGEN$ general phases (phase permutations 45°, 135°, 225°, 315°) + NANY phases of either sort.

The values of certain parameters are fixed in the program, not set by the user. These will not be discussed here.

Choice of the relative weights for ABS FOM, PSI ZERO, and RESID. Default values are 1.0, 1.0, 1.0, putting CFOM in the range 0.0-3.0.

Choice of the number of E maps to calculate and examine. Choice of the number of large peaks to save. (The default action is not to print the entire E map, but rather only a projection of the peaks saved, the number of which is taken as $1.2 \times NAT$.)

Major considerations The extent to which molecular geometry is known prior to structure determination.

The number of atoms in the asymmetric unit (NAT).

The total number of \sum_2 relationships (NSRTOT); the maximum number which can be stored (NSRMAX).

Previous experience; difficulty in solving the structure.

The total number of phase sets which will need to be developed (NUMSET); the presence of weak links in the convergence map. (If special circumstances seem to warrant it, the user may specify explicitly any or all of the reflexions in the starting set rather than accepting the choices made automatically by MULTAN.)

Speed of phase development, hence the use of a weighted tangent formula; caution in the initial steps, hence the attempt to ensure that phase development follows the most probably correct path.

The space group of the structure. In space groups without screw axes or glide planes, ABS FOM may be given less and PSI ZERO more weight.

The figures of merit of the phase sets; whether or not the combined figures of merit clearly distinguish among the phase sets. Note that various recycling procedures may sometimes succeed in extracting the correct structure even from quite unpromising fragmentary E maps. calculate E-set 2, employing a modified Wilson plot based on the equation

$$|E_{\mathbf{h}}|^2 = k \exp(2Bs^2) |F_{\mathbf{h}}|^2 / \varepsilon \sum g_m^2(s)$$

where g is the spherically averaged molecular scattering factor calculated from the formula (Debye, 1915)

$$g^2(s) = \sum_i \sum_j f_i(s) f_j(s) \sin \left(4\pi s r_{ij}\right) / 4\pi s r_{ij},$$

 r_{ij} = distance between atoms *i* and *j*. The two sets of *E* values are quite different, as the following few examples show:

h	k	1	E-1	E-2
0	0	4	4.78	3.96
0	0	8	2.35	1.46
4	0	0	3.42	3.49

7	1 - 16	3.26	3.55
8	1 11	2.87	3.43
1	3 13	3.96	3.04
2	3 0	3.68	3.82
7	3 -7	4.25	3.53
7	3 -3	3.00	2.66
7	3 5	3.40	2.84
5	4 -1	2.86	3.75
0	6 0	2.64	3.21
0	8 1	5.03	4.03
0	8 3	3.16	2.53
6	8 -9	2.78	3.33

In particular, reflexion 008, for which there is a strong but incorrect \sum_{1} indication in *E*-set 1, is no longer among the 260 largest *E*-values chosen from *E*-set 2.

Table 2. INOS: $C_6H_{12}O_6$. H_2O , $P2_1/n$, Z=8, NAT = 12 + 1 + 12 + 1 = 26

PARAMETERS SIGMA-2 NUMB 260 NSRT 2462 NSRTOT 2462 ONVERGE PROB 0.95	(NO ENA TYPE SIGMA-1	h k	PH FIXING NEEDED PHI) PUB	PHASE SET CONSIDERED		RES OF ME	TIT	PHASE		E-MAPS CORRECT PEAKS
NUMB 260 NSRT 2462 NSRTOT 2462 ONVERGE			PHI	PUB	CONGTRUM						
NUMB 260 NSRT 2462 NSRTOT 2462 ONVERGE	SIGMA-1	0 6			CONSIDERED	ABS FOM	PSI ZERO	RESID	ERROR	TOTAL	PEAK NUMBERS
ONVERGE	ODTOTH	0 0 4 0	180, P=1.000 360, P=0.999 180, P=0.992	180 180 180	ALL 64: MAXIMUM MINIMUM CFOM 1: 2.9986	1.1172 0.6703 1.1166	-	40.15 29.58 29.58	88.6 52.1 84.8	-	
C, NGEN , NANY 0.0.6	ORIGIN DEFINING PHASES	<u>14-</u> 08	5 180 4 360 1 360,180	360 180 360 180	CFOM 2-9: 2.9511- 2.9558 CFOM 10-12: 2.5698- 2.5744	1.1159- 1.1172 1.0217- 1.0249	-	30.02- 30.10 31.82- 31.94	84.5- 85.2 82.7- 85.2	-	FAILURE
NUMSET 64	PERMUTED PHASES	7 1 4 4-1 3 1 -	8 360,180 4 360,180 4 360,180	360 180 180 180	2.0289 PUBLISHED PHASES	0.9802	-	36.93 36.93 18.74 18.80	52.1- 58.8 0.7* 0.0	-	
SIGMA-2 NUMB 260	SIGMA-1 ORIGIN	73-	7 360	180 360	ALL 64: MAXIMUM MINIMUM	1,1171 0.5335	-	45.71 24.70	91.4 56.1		
NSRTOT 2462 ONVERGE PROB 1.00	PHASES	14- 08 23	4 <u>360</u> 1 360,180	180 360 180 360	CFOM 1: 2.9383	1.0811	-	24.70	66.6	12+1+ 11+1= 25	$\begin{array}{l} 1-6,9-14,17,19,22-\\ 26,34,35,40,43,46,\\ 47 (\Delta y = -0.33)\\ (\text{PARTIAL SUCCESS}) \end{array}$
C, NGEN, NANT 0,0,6 FASTAN NUMSET 64	PERMUTED PHASES	7 1	8 360,180	180 360 180	CFOM 2-4: 2.7431- 2.7437 PUBLISHED PHASES		-	30.10	85.2	-	
	STCHA- 4	54-	4 360,180	180	PUB REFINED BY FAST	IN 1.1810		18.80	0.0		
NUMB 260 NSRT 2386	ORIGIN	4073.	0 180, P=0.996 7 360	180 360	MINIMUM CFOM 1: 2.1338	0.6800	311.7	26.96	61.9	<u> </u>	
PROB 0.95	PHASES	1 4 -	4 <u>360</u> 4 360,180	360 180	CFOM 3: 1.3091 CFOM 4: 1.3012	0.6800	311.7 341.7	36.00 37.53	86.9 81.4		FAILURE
FASTAN	PHASES			360	PUBLISHED PHASES	1.1030	209.1 217.3	19.99 19.85	0.7° 0.7	1	
	SIGMA-1 ORIGIN	4 0	0 180, P=0.996 7 360	360	ALL 16: MAXIMUM MINIMUM CFOM 1: 2.1305	1.1334 0.6863 1.1330	765.0 303.3 704.4	39.73 26.96 26.96	86.6 61.6 82.4	4_	
NSRTOT 2386 CONVERGE	DEFINING PHASES	0 4	4 360	360 360 180	CFOM 3: 2.0981	1.0002	495.2 494.6	29.36	84.1 83.8	=	FAILURE
EC, NGEN, NANY 0.0.4 FASTAN	PHASES	2 3	0 360,180 1 360,180	360 360 180	CFOM 5: 1.5071 PUBLISHED PHASES PUB REFINED HY FAST	1.1030	323.8 209.1 217.3	35.48 19.99 19.85	80.7 0.7* 0.7	-	
		4 0	0 180, P=0.996	180	MINIMUM	1.1334	765.0	41.17	88.6 0.7		
		0 4	1 360 4 360	360 360	CFOM 2: 2.9223	1.1047	222.9	19.95	1.4	26	1-22,24,28,30,46 1-18,20-23,25,31, 32,44
PROB 0.95 EC, NGEN, NANY 0.05		7 4	0 360,180 1 360,180	180 360 360	CFOM 4: 2.1931 PUBLISHED PHASES	1.0335 1.0335 1.1030	357.5 360.8 209.1	26.77 26.80 19.99	72.0 72.0 0.7*		
		3 1	4 360,180	180 180	PUB REFINED BY FAST	AN 1.1049	4			<u> </u>	
		4 0	0 180, P=0.996	180	MINIMUM		765.0 217.6 217.6	45.22 19.85 19.85	0.7	26	1-22,24,28,30,46
NSRTOT 2386 CONVERGE	DEFINING PHASES	0 4	11 360 -4 360	360 360	CFOM 3,4: 2.9392	1.1047	222.9	19.95	1.4	26	1-18,20-23,25,31, 32,44
EC, NGEN, NANY 0,0,0	PERMUTED	2 3 7 4 7 3 3 1	0 360,180 -1 360,180 5 360,180 -4 360,180	360 360 360 180	2.3097 PUBLISHED PHASES PUB REFINED BY FAST	1.033	7 360.8	26.8	0.7	>	
	ASTAN	TASTAN G4 TASTAN G4 PERMUTED PHASES SIGMA-2 SIGMA-1 NUMB 260 ORIGIN PHASES SIGMA-2 SIGMA-1 NUMB 2462 PROB 1.00 , NGEN, NANT 0,0,6 PERMUTED FROB 1.00 , NGEN, NANT 0,0,6 PERMUTED SIGMA-2 SIGMA-1 NUMB 260 NSRT 2386 ORIGIN PROS SIGMA-2 SIGMA-1 NUMB 260 NSRT 2386 ORVERGE PHASES SIGMA-2 SIGMA-1 NUMB 260 NSRT 2386 ORVERGE PHASES SIGMA-2 SIGMA-1 NUMB 260 NSRT 2386 ORVERGE PHASES FROB 0.95 C, NGEN, NANY 0,0,0,4 PHASES FROB 0.95 C, NGEN, NANY 0,0,0,5 PERMUTED FROB 0.95 C, NGEN, NANY 0,0,0,5 PERMUTED FROB 0.95 C, NGEN, NANY 0,0,0,5 PERMUTED FROB <td< td=""><td>CASTAN 24 3 0 UMMSET 64 PERNUTTED 7 1 PHASES 7 1 3 1 SIGMA-2 SIGMA-1 0 6 0 NUMB 260 ORIGIN 7 3 1 SIGMA-2 SIGMA-1 0 6 0 0 6 NUMB 260 ORIGIN 7 3 1 4 -0 NNRT 2462 DETNING 0 8 3 1 4 -0 7 1 4 0 7 1 4 0 7 1 4 0 7 1 1 4 0 7 1 1 4 0 1 0 6 1 1 0 1 <t< td=""><td>ZASTAN 2 3 0 360, 180 UMMSET 64 PERMUTED 7 1 8 360, 180 JUMSET 64 PHASES 4 4-14 360, 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 SIGMA-1 0 6 0 8 3 1.4 -4 360, 180 NUME 2462 PHASES 0 8 5 4.0 360, 180 SIGMA-1 0 6 0 180, P=1.000 180, P=0.996 1.00 NUMB 260 NSRT 2366 ORIGIN 7 3-7 360 SIGMA-2 SIGMA-1 0 6 0 180, P=0.996 NUMB 260</td><td>CASTAN PERMUTED 2 3 360, 180 360, 180 360, 180 360, 180 UMMSET 64 PHASES 7 8 360, 180 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 180 NUMB 260 ORIGIN 7 3-7 360, 180 180 NUMB 2462 DEFINING 0 8 1 4-4 360, 180 180 NUMB 2462 DEFINING 0 8 1 360, 180 180 NUME 2462 PHASES 1 4 4 360, 180 180 NUME 2462 PERMUTED 4 0 0 360, 180 180 NUMSET 64 1.00 5 4 -4 360, 180 180 NUME 266 NIGIN 7 3<-7</td> 360 180 180 NUME 266 REGININ 7 3<-7</t<></td> 360</td<>	CASTAN 24 3 0 UMMSET 64 PERNUTTED 7 1 PHASES 7 1 3 1 SIGMA-2 SIGMA-1 0 6 0 NUMB 260 ORIGIN 7 3 1 SIGMA-2 SIGMA-1 0 6 0 0 6 NUMB 260 ORIGIN 7 3 1 4 -0 NNRT 2462 DETNING 0 8 3 1 4 -0 7 1 4 0 7 1 4 0 7 1 4 0 7 1 1 4 0 7 1 1 4 0 1 0 6 1 1 0 1 <t< td=""><td>ZASTAN 2 3 0 360, 180 UMMSET 64 PERMUTED 7 1 8 360, 180 JUMSET 64 PHASES 4 4-14 360, 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 SIGMA-1 0 6 0 8 3 1.4 -4 360, 180 NUME 2462 PHASES 0 8 5 4.0 360, 180 SIGMA-1 0 6 0 180, P=1.000 180, P=0.996 1.00 NUMB 260 NSRT 2366 ORIGIN 7 3-7 360 SIGMA-2 SIGMA-1 0 6 0 180, P=0.996 NUMB 260</td><td>CASTAN PERMUTED 2 3 360, 180 360, 180 360, 180 360, 180 UMMSET 64 PHASES 7 8 360, 180 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 180 NUMB 260 ORIGIN 7 3-7 360, 180 180 NUMB 2462 DEFINING 0 8 1 4-4 360, 180 180 NUMB 2462 DEFINING 0 8 1 360, 180 180 NUME 2462 PHASES 1 4 4 360, 180 180 NUME 2462 PERMUTED 4 0 0 360, 180 180 NUMSET 64 1.00 5 4 -4 360, 180 180 NUME 266 NIGIN 7 3<-7</td> 360 180 180 NUME 266 REGININ 7 3<-7</t<>	ZASTAN 2 3 0 360, 180 UMMSET 64 PERMUTED 7 1 8 360, 180 JUMSET 64 PHASES 4 4-14 360, 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 NUMB 260 ORIGIN 7 3-7 360, 180 SIGMA-1 0 6 0 8 3 1.4 -4 360, 180 NUME 2462 PHASES 0 8 5 4.0 360, 180 SIGMA-1 0 6 0 180, P=1.000 180, P=0.996 1.00 NUMB 260 NSRT 2366 ORIGIN 7 3-7 360 SIGMA-2 SIGMA-1 0 6 0 180, P=0.996 NUMB 260	CASTAN PERMUTED 2 3 360, 180 360, 180 360, 180 360, 180 UMMSET 64 PHASES 7 8 360, 180 180 SIGMA-2 SIGMA-1 0 6 0 180, P=1,000 180 NUMB 260 ORIGIN 7 3-7 360, 180 180 NUMB 2462 DEFINING 0 8 1 4-4 360, 180 180 NUMB 2462 DEFINING 0 8 1 360, 180 180 NUME 2462 PHASES 1 4 4 360, 180 180 NUME 2462 PERMUTED 4 0 0 360, 180 180 NUMSET 64 1.00 5 4 -4 360, 180 180 NUME 266 NIGIN 7 3<-7	ASTAN PERVITED PERVITED <t< td=""><td>XASTAN 2 3 0 360,180 560 CFOH 13_21: 1,9960, 0,960, 2,0289 0,980, 9 UNMSET 64 +4-14 360,180 180 PUBLISHED PHASES 1.1809 JIGMA-2 SIGMA-1 0 6 14 4-14 360,180 180 JIGMA-2 SIGMA-1 0 6 180, P-1.000 180 ALL 64: MAXINUM 1.1810 JIGMA-2 SIGMA-1 0 6 180, P-1.000 180 ALL 64: MAXINUM 1.0511 JIMMB 260 ORTON 7 3 160 560 CFOM 1: 2.19383 1.0817 JIMMB 0.0,6 PERNUTED 7 8 360,180 180 CFOM 1: 2.19383 1.0817 JINSET 64 0 0 360,180 180 CFOM 1: 2.19383 1.1371 JUNSET 64 0 180, P=1.000 180 ALL 8: MAXINUM 1.6830 JUNSET 64 0 180, P=0.996 180 CFOM 1: 2.19381</td><td>XASTAN Conversion Conversion<</td><td>ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASSA ASSA</td><td>XASTAN PERMUTED 2 3 0 350 180 500 1000 20.2029 0.9802 </td><td>XASTAN 2 3 0 560, 150 360 CPCN 13-221: 1, 990- 0, 960-2 36, 37-52, 37-5 - INREST 64 4-14 360, 180 160 160 9802 - 16, 39 58, 3- - 16, 00 0.0 SIGMA-2 SIGMA-10 6 0 7 3, 60, 180 160 PUELTSEED FLASES 1, 180 - 15, 74 0, 77 NOR 2462 DETININ 0 6 100 RETINED FLASES 1, 180 - 24, 70 56, 1 24, 70 56, 1 14+1</td></t<>	XASTAN 2 3 0 360,180 560 CFOH 13_21: 1,9960, 0,960, 2,0289 0,980, 9 UNMSET 64 +4-14 360,180 180 PUBLISHED PHASES 1.1809 JIGMA-2 SIGMA-1 0 6 14 4-14 360,180 180 JIGMA-2 SIGMA-1 0 6 180, P-1.000 180 ALL 64: MAXINUM 1.1810 JIGMA-2 SIGMA-1 0 6 180, P-1.000 180 ALL 64: MAXINUM 1.0511 JIMMB 260 ORTON 7 3 160 560 CFOM 1: 2.19383 1.0817 JIMMB 0.0,6 PERNUTED 7 8 360,180 180 CFOM 1: 2.19383 1.0817 JINSET 64 0 0 360,180 180 CFOM 1: 2.19383 1.1371 JUNSET 64 0 180, P=1.000 180 ALL 8: MAXINUM 1.6830 JUNSET 64 0 180, P=0.996 180 CFOM 1: 2.19381	XASTAN Conversion Conversion<	ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASTAN ASSA ASSA	XASTAN PERMUTED 2 3 0 350 180 500 1000 20.2029 0.9802	XASTAN 2 3 0 560, 150 360 CPCN 13-221: 1, 990- 0, 960-2 36, 37-52, 37-5 - INREST 64 4-14 360, 180 160 160 9802 - 16, 39 58, 3- - 16, 00 0.0 SIGMA-2 SIGMA-10 6 0 7 3, 60, 180 160 PUELTSEED FLASES 1, 180 - 15, 74 0, 77 NOR 2462 DETININ 0 6 100 RETINED FLASES 1, 180 - 24, 70 56, 1 24, 70 56, 1 14+1

Choice of E and definition of the problem

Assuming that we have calculated E values as best we can, MULTAN now makes the simplest choice among them, selecting the NUMB largest. None of the other structure factors is considered at all in the phase determination, and it is only afterwards that ψ_0 , which uses the smallest E values, is calculated as a figure of merit. Thus MULTAN is in effect determining phases for a 'structure' which is *defined* as the Fourier transform of the NUMB chosen E values taken with the phases of the true structure, all other E values being taken as having zero magnitude. Since the user *chooses* this structure, he must know what properties it should have and how to ensure that it does have them.

The crucial property is that a 1:1 correspondence can easily be made between the true structure and the defined structure; that is, the true atomic positions are recognizable among the highest peaks of the defined structure. Awareness of the necessity for this correspondence is usually expressed by asking how many E values are needed to make a good Fourier map of the structure. A common rule of thumb is to use at least 10 E values per atom to be found, which, if the phases are good, will certainly ensure that the true atomic positions are well defined in the E map.

It is important, though, to ask as well how *few E* values will suffice to make a recognizable Fourier map of the structure. The number of *E* values chosen may be a critical number and not just a matter of convenience when using *MULTAN*, and as will become clear from the discussion below, one wishes to take only as many *E* values as necessary. From the figures for LITH (Table 3, case 1), MINA (Table 4, case 1), TPH (Table 6, case 1), and, among other recent examples, 4-octadecynoic acid ($C_{18}H_{32}O_2$), crocetindi-

Table 3. LITH: $C_{24}H_{40}O_3$, $P2_12_12_1$, Z=4, NAT=27

			STARTI	NG SET		RE	SULTS			MEAN	E-MAPS		
CASE	PARAMETERS	ENA		FIXED BY (E)		PHASE SET		ES OF MEI	RIT	PHASE	CORRECT PEAKS		
		TYPE	h k l	PHI	PUB	CONSIDERED		PSI ZER		ERROR	TOTAL		
	SIGMA-2 NUMB 199	SIGMA-1 ORIGIN	NONE 2 0 11	WITH P ≥ 0.95 90	- 90	ALL 32: MAXIMUM MINIMUM	1.0915	334 .1 161.8	38.59 17.35	87.2			
1	NSRT 1975 NSRTOT 1975 CONVERGE	DEFINING PHASES	0118	90 90 45,135,225,315	90 90 83	CFOM 1: 2.9958	1.0897	161.8	17.35	9.5	24	1-7,9,11-14,16,18, 20,21,23,25,28,31, 32,34,39,40	
	PROB 0.95 NSPEC, NGEN, NANY 0,0,3 FASTAN	PERMUTED PHASES	4 6 12 1 1 1	45,135,225,315	100 95	CFOM 2: 2.9842	1.0915	162.3	17.61	9.6	25	1-8,11-15,18-20, 23,24,30,31,35-37 40,44	
	NUMSET 32					CFOM 3: 1.7142	0.8919	202.5	29.91	33.4	23	1-4,6-8,10-13,16, 17,21,22,24,25,29 34,36,37,41,42,44	
						CFOM 4: 1.6026 PUBLISHED PHASES	0.9888	269.3	28.76	86.2	-		
						PUB REFINED BY FASTAN		162.6	17.21	9.4			
	SIGMA-2 NUMB 270	SIGMA-1 ORIGIN	NONE 2 0 11	WITH P ≥ 0.95 90	- 90	ALL 32: MAXIMUM MINIMUM	0.9604	406.6	44.80	88.1 62.5			
	NSRT 1620	DEFINING	0 11 8	90	90	CFOM 1: 2.3613	0.9338	306.1	38.22	83.9	1_		
	NSRTOT 5062	PHASES	3 5 0	<u>90</u>	90	CFOM 2: 2.2748	0.9030	310.3	37.85	88.1	-		
2	CONVERGE		1 1 12	45,315 (E)	338	CFOM 3: 2.0046	0.8793	277.0	40.29	76.1	-	FAILURE	
ſ	PROB 0.95	PERMUTED			83	CFOM 4: 1.8552	0.8793	281.5	41.17	77.6	-		
	NSPEC, NGEN, NANY 0,0,3	PHASES	1 1 1	45,135,225,315	95	CFOM 5: 1.8261	0.8745	289.2	40.96	73.7	-		
	FASTAN NUMSET 32	1				PUBLISHED PHASES PUB REFINED BY FASTAN	1.0807	164.8 172.2	32.35 32.28	10.5* 11.7			
	SIGMA-2	SIGMA-1	NONE	WITH P ≥ 0.95	-	ALL 128: MAXIMUM	1.1330	443.6	45.31	89.0	 		
[NUMB 270	ORIGIN	2 0 11	90	90	MINIMUM	0.6205	170.8	32.40	11.7			
	NSRT 1620	DEFINING	0 11 8	90	90	CFOM 1: 2.9938	1.1330	172.5	32.40	11.7	27	1-12,14-18,20-24,	
3	NSRTOT 5062 CONVERGE	PHASES	3 5 0	90 45,315 (E)	90 338	CFOM 2: 2.9467	1,1291	170.8	32.99	12.6	27	28,30,35,38,40	
	PROB 0.95 NSPEC, NGEN, NANY 0.0.4	PERMUTED	2 3 17	45,135,225,315	83 95			1,010	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.0		24,26,32,33,37,40	
t	FASTAN	1		45,135,225,315	94	CFOM 3: 1.7512	0.9097	272.0	38.11	87.8	- 1		
r	NUMSET 128					PUBLISHED PHASES	1.0807	164.8	32.35	10.5*	I		
						PUB REFINED BY FASTAN	1.1330	172.2	32.28	11.7			
L 1	SIGMA-2	SIGMA-1	NONE	WITH P ≥ 0.95	-	ALL 32: MAXIMUM	1.0071	616.2	41.58	88.4			
	NUMB 270	ORIGIN DEFINING	3 5 0	90 180	90 180	MINIMUM	0.7462	355.7_	35.45	50.4	1		
	NSRT 4000 NSRTOT 5062	PHASES	0 2 25	90	90	CFOM 1: 2.2710 CFOM 2: 2.1204	0.8518	384.7	36.35 36.04	65.3 80.7	1 :	1	
_4 F	CONVERGE	1100000	1 1 12	45,315 (E)	338	CFOM 3: 2.0815	0.8517	391.6	36.58	79.3	1 2	FAILURE	
_ ' H	PROB 0.95	PERMUTED		45,135,225,315		CFOM 4: 2.0310	0.9505	498.3	36.70	64.2	1 2	TRIBURE	
	NSPEC, NGEN, NANY 0,0,3	PHASES		45,135,225,315		CFOM 5: 1.8681	0.7462	390.0	35.45	86.5	-		
F	FASTAN NUMSET 32					PUBLISHED PHASES PUB REFINED BY FASTAN	1.0312	200.0	19.32	6.2* 8.3	1		
+	SIGMA-2	SIGMA-1	NONE	WITH P ≥ 0.95	-	ALL 128: MAXIMUM	1.0798	636.2	41.72	88.3			
ŀ	NUMB 270	ORIGIN	3 5 0	90	90	MINIMUM	0.6434	201.1	20.29	8.4			
	NSRT 4000 NSRTOT 5062	DEFINING PHASES	0 2 23 0 3 17	180 90	180 90	CFOM 1: 2.9857	1.0739	201.5	20.29	8.4	27	1-19,21-23,35,36, 42,46,50	
5	CONVERGE PROB 0.95	PERMUTED	1 1 12	45,315 (E) 45,135,225,315	338 208	CFOM 2: 2.9845	1.0731	201.1	20.30	8.4	27	1-18,20-22,24,35, 36,42,45,51	
ŀ	NSPEC, NGEN, NANY 0,0,4 FASTAN	PHASES	1 12 4	45,135,225,315	210	CFOM 3: 2.9831	1.0743	201.7	20.35	8.6	27	1-18,20-23,32,33,	
f	NUMSET 128					CFCM 4: 2.9829	1.0738	201.6	20.33	8.4	27	1-19,21-23,33,36,	
- 1						CFCM 5: 1.6098	0.9388	399.0	33.41	86.4	1 - 1		
1						PUBLISHED PHASES	1.0312	200.0	19.32	6.2*	1	1	
		1				FUB REFINED BY FASTAN	1.0737	201.0	20.22	8.3	1		

aldehyde $(C_{20}H_{24}O_2)$, δ -pyrazinecarboxamide $(C_5H_5N_3O)$ (Mo, Hjortås & Svinning, 1973), and 1,2:3,4:5,6-tris-(o,o'-biphenylene)borazine

 $(C_{36}H_{24}B_3N_3)$ (Roberts, Brauer, Tsay & Krüger, 1974), it is clear that the use of five to seven *E* values per atom to be determined may be quite sufficient, if the phases are close to their true values, to give a good, readily interpretable Fourier map, and that ten *E* values per atom should perhaps better be thought of as an upper limit. [Note that when the correspondence between the defined and the true structure, judged by the peak numbers of correct peaks in *E* maps made with published phases, is somewhat poor, as for RR (Table 5, case 1) and AZET (Table 7, cases 1 and 2), there is greater difficulty, as might be expected, in developing good phases].

Choice of \sum_{2} and limitations on the solution

The second property required of the defined structure is that the assumptions made in deriving the directmethods formulae and phase relationships used by MULTAN hold sufficiently well for these to be applied to the defined structure. Essentially we require that Sayre's equation, and the related tangent formula, apply. When the number of E values per atom in the asymmetric unit is larger than about 5, Sayre's equation or at least its angular part does in fact hold to a high degree of approximation, when all the terms are included in the summation. This can be seen by applying the tangent formula once to calculate, simultaneously, the phases of the NUMB largest Evalues from their published phases, including all terms:

Table 4. MINA: $C_9H_{10}N_2O_3$, $P2_12_12_1$, Z=8, NAT=14+14=28

				STARTIN	G SET			RE	SULTS			MEAN		E-MAPS
CASE	PARAMETERS		ENA	TIOMORPH	FIXED BY (E)		PHASE			ES OF ME		PHASE		
			TIPE	h k l	PHI	PUB	CONSID	ERED	ABS FOM	PSI ZERO	RESID	ERROR	TOTAL	PEAK NUMBERS
	SIGMA-2		SIGMA-1		WITH P ≥ 0.95	-	ALL 16:		1.0867	295.1	34.90	86.0		
	NUMB NSRT	182 1505	ORIGIN DEFINING	17 3 0 0 14 3 7 18 0	270 360 90	270 360 90	CFOM 1:	MINIMUM 2.9991	0.7235	162.1	15.26 15.26	9.4 9.4		1-6,8-17,21,23,26, 28-32,36
1	NSRTOT CONVERGE PROB	1505	PHASES	13 0 2	360,180	180 341	CFOM 2:	2.6116	1.0383	162.1	20.27	13.5		1-12,14,15,18,19, 21,23,29,31,35,37,
	NSPEC, NGEN, NANY C		PHASES	12 1 2	45,135 (E)	29	CFOM 3:	1 2606	0.7717	168.9	31.38	53.5		40,44,45
	NUMSET	16					PUBLISHE PUB REFINED	D PHASES	1.0129	157.4	15.79	7.9* 9.3		
	SIGMA-2		SIGMA-1	NONE	WITH P ≥ 0.95	-	ALL 8:	MAXIMUM	0.8974	350.2	46.44	87.3		
	NUMB NSRT	280 1540	ORIGIN DEFINING	17 3 0 7 18 0	270 90	270 90	CFOM 1:		0.5747	183.6 335.8	40.91	60.0 82.2	- 1	
2	NSRTOT CONVERGE	5220	PHASES	051	90 180 (E)	90 180	CFOM 2: CFOM 3:	1.6491	0.8567 0.8568	331.1 350.2	41.95	79.5 82.6	:	FAILURE
	PROB NSPEC, NGEN, NANY	0.95	PERMUTED PHASES	8 18 0	360,180 45,135,225,315	360 76	CFOM 4: CFOM 5:		0.6644	219.9 339.2	43.50	81.2	:	
	FASTAN	8					PUBLISHE PUB REFINED	D PHASES	1.0933	214.8 208.7	34.41 33.40	11.5*	1	
	SIGMA-2		SIGMA-1	NONE	WITH P ≥ 0.95	-	ALL 32:	MAXIMUM MINIMUM	1.1612	387.2 169.2	47.58 33.34	86.8		
	NUMB NSRT NSRTOT	280 1540 5220	ORIGIN DEFINING PHASES	17 3 0 7 18 0 0 5 1	270 90 90	90 90	CFOM 1:	2.8230	1.1612	207.8	33.34	11.8	14+13	1-15,17-24,26,34, 46,56
3	CONVERGE	0.95	PERMUTED	13 0 2 8 18 0	360,180 360,180	180 360	CFOM 2:	2.8187	1.1612	208.3	33.36	11.7	14+12	1-16,18-24,26,33, 46
		0,0,4	PHASES	12 8 4	45,135,225,315 225,315 (E)	76 337	CFOM 3:	2.8142	1.1606	208.4	33.41	11.8	14+13 =27	1-16,18-25,34,44, 52
	NUMSET	32					CFOM 4:	2.8068	1,1602	208.5	33.49	11.8	14+12 =26	1-16,18-24,26,34, 46
							CFOM 5:		1.1594	210.1	33.58	11.8	14+13 =27	1-16,18-24,26,34, 42,54
		i					CFOM 6-8:	1.3666- 1.4226	0.6795-	192.0- 207.1	43.20		-	
		:					CFOM 9:	1.3456	0.8753	280.8	42.03	38.6	13+13 =26	1-5,7-10,12-14,17, 19,25,28,31,34,36- 39,43,44,47,55
							CFOM 10:		0.8756	270.1	43.14	46.2	11+2 =13	1-4,7,8,16,22,25, 33,36,37,42
							CFOM 11:		0.7284	203.8	44.12	79.8	- 1	
							PUBLISHE PUB REFINED		1.0933 1.1608	214.8 208.7	34.41 33.37	11.5° 11.7		
	SIGMA-2	190	SIGMA-1 ORIGIN	NONE	WITH P ≥ 0.95	-	ALL 16:	MAXIMUM MINIMUM	1.1485	499.8 216.6	47.68	84.9		
	NUMB NSRT NSRTOT	280 2000 5220	DEFINING	17 3 0 0 14 3 0 5 1	270 360 90	360	CFOM 1:		1.1485	219.9	29.60	11.2	14+14 =28	1-14,16-24,26,27, 29,32,37
4	CONVERGE PROB NSPEC, NGEN, NANY	0.95	PERMUTED	13 0 2 12 3 2	360,180 45,315 (E) 45,135,225,315	180 341 29	CFOM 2:	1.6578	0.8229	216.6	42.19	42.4	12+7 =19	1-3,6-9,12,13,18, 19,21,22,25,26,28, 29,39,42
	FASTAN NUMSET	16					CFOM 3: PUBLISHE	1.3550 D PHASES	0.6714	222.8	41.83	84.9	-	
	Norabiz						PUB REFINED			219.6	29.58	11.1	L	
	SIGMA-2 NUMB	280	SIGMA-1 ORIGIN	NONE 17 3 0	WITH P ≥ 0.95 270	- 270	ALL 16:	MAXIMUM MINIMUM	0.9624	519.2 278.7	40.60	87.1	1	
	NSRT NSRTOT	4000 5220	DEFINING PHASES	0 14 3	360 180	360 180	CFOM 1:	2.1656	0.8216	278.7	34.38	36.1	13+12 =25	1-12,17-19,21,23, 25-27,30,34,36,37,
5	CONVERGE PROB NSPEC, NGEN, NANY	0.95 0.0,3	PERMUTED PHASES	13 0 2 12 3 2 12 1 2		180 341 29	CFOM 2:	1.9847	0.8174	308.3	34.58	36.8	13+11 =24	156 1-10,13-15,20,22- 24,27,29,34,35,42, 46,53
	FASTAN NUMSET	16	1				CFOM 3:		0.9534	445.2	38.45	77.6	- 1	
			1			1		D PHASES BY FASTAN	1.0523	228.0	21.21	7.8* 9.3	1	1

$$\tan \varphi_{\mathbf{h}}(\text{CALC}) = \frac{\sum_{\mathbf{k}} \kappa_{\mathbf{h}\mathbf{k}} \sin \left[\varphi_{\mathbf{k}}(\text{PUB}) + \varphi_{\mathbf{h}-\mathbf{k}}(\text{PUB})\right]}{\sum_{\mathbf{k}} \kappa_{\mathbf{h}\mathbf{k}} \cos \left[\varphi_{\mathbf{k}}(\text{PUB}) + \varphi_{\mathbf{h}-\mathbf{k}}(\text{PUB})\right]},$$

(NUMB such equations).

Note that this is not a stepwise or iterative procedure, so that each calculated phase is independent of all the others. The phases returned differ only slightly, on average, from the input published phases. The mean absolute value of the difference $\varphi(PUB)$ -

<u> </u>						1				1074.11	r	D. NADO
CASE	PARAMETERS	ENA	STARTI NTIOMORPH	NG SET FIXED BY (E)		PHASE SET	FIGU	ES OF ME	RIT	MEAN PHASE		E-MAPS CORRECT PEAKS
		TYPE	h k l	PHI	PUB	CONSIDERED	ABS FOM	PSI ZERO	RESID	ERROR	TOTAL	PEAK NUMBERS
1	SIGMA-2 NUMB 221 NSRT 1736 ONFOT 1725 CONVERGE 0.95 NSPEC, NGEN, NANY 0,0,2 PASTAN	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED PHASES	6 0 0 12 0 0 0 0 8 6 8 1 0 9 7 1 3 3 2 5 3 3 7 5	180, P=0.983 360, P=0.951 275	180 180 360 275 13 33 27 212	ALL 32: NAXIMUM MINIMUM CFOH 1: 2.2.133 CFOM 2-22,24-31: 1.2016-2.0220 CFOM 23: 1.5322 CFOM 23: 0.5723 PUBLISHED PHASES	1.2500 1.1438 1.2317 1.2172- 1.2500 1.1438 1.2046 0.9495	383.6 327.1 361.8 370.0- 380.1 327.1 383.6 151.5	35.46 32.48 32.48 33.00- 34.91 33.88 35.46 23.21	73.7 61.8 62.0 61.8- 69.9 73.7 65.7 13.3*	- - - - -	FAILURE
1	NUMSET 32					DUD DUDTNED DY RIGHT	1.0846			16.7		33,39,57,62,70,71,
						PUB REFINED BY FASTAN		172.9	21.48	16.7		
2	SIGHA-2 NUMB 221 NSRT 1736 NSRTOT 1736 CONVERGE PROB PROE, NGEN, NANY 0, 0, 3 FASTAN FASTAN	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED	6 0 0 12 0 0 0 0 8 6 8 1 0 9 7 1 3 3 2 5 3 3 7 5	180, P=0.983 360, P=0.951 275 45 (E) 45,315 45,135,225,315		CFOM 3: 1.8275 CFOM 4: 1.6872 CFOM 5: 1.6547	1.2515 0.8195 0.8716 0.9533 1.1547 0.8924 0.9495	386.2 189.5 194.1 189.5 220.2 322.9 229.9 151.5	35.46 25.84 27.35 28.98 29.79 28.81 23.21	77.0 56.5 70.7 68.2 58.3 74.4 67.4 13.3*		FAILURE
	NUMSET 128	PHASES	494			PUB REFINED BY FASTAN	1.0812	172.9	21.53	16.8	,,,	
3	SIGMA-2 NUMB 402 NSRT 2000 NSRTOT 9372 CONVERGE 9702 PROB 0.95 NSPEC, NGEN, NANY 0.0.2 7ASTAN NUMSET 32	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED PHASES	0 0 4 6 0 0 12 0 C 0 0 8 2 5 3 7 11 8 5 17 7 4 9 4 8 10 2	180, P=0.998 180, P=0.998 360, P=0.974 27 45 (E) 45,315 45,135,225,315		ALL 32: MAXIMUM MINIMUM CFOM 1: 2.0609 CFOM 2: 1.7739 CFOM 3: 1.7707 CFOM 4: 1.5715 CFOM 4: 1.5715 PUBLISHED PHASES PUB REFINED BY FASTAN	1.2584 0.8391 1.1351 1.2428 1.2435 1.2534 0.9602 1.0820	523.5 203.3 409.9 416.0 493.7 498.0 501.0 150.7 184.5	42.76 38.65 39.56 39.83 40.49 40.65 38.17 35.74	79.6 64.3 70.5 75.3 71.5 67.9 66.9 22.8* 27.1		FAILURE
4	SIGMA-2 NUMB 402 NSRT 2000 NSRTOT 9372 CONVERGE - PROB 0.95 NSPEC, NGEN, NANY 0,0,3 FASTAN - NUMSET 128	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED PHASES	8 10 2	180, P=0.998 180, P=0.998 360, P=0.974 27	300	ALL 128: MAXIMUM MININUM CFOM 1: 2.0163 CFOM 2: 1.9797 CFOM 3: 1.9254 CFOM 4: 1.9196 CFOM 5: 1.8886 PUBLISHED PHASES PUBLISHED BY FASTAN	1.2661 0.7942 1.1088 1.1104 1.2536 1.1119 1.2661 0.9602 1.0816		43.76 38.98 39.03 39.05 39.07 39.71 38.17 35.68	80.7 57.3 73.5 75.7 68.2 80.7 66.1 22.8• 27.1		FAILURE
	SIGMA-2 NUMB 402	SIGMA-1	0 0 4		360 180	ALL 32: MAXIMUM MINIMUM	1 .2398 1.0022	815.9 327.3	42.59	73.0 26.8		
	NSRT 4000	01-101	12 0 0	180, P=0.998	180	CFOM 1: 2.1526	1.0385		31.95	26.8	35	1-12,14-27,31,33,
5	NSRTOT 9372 CONVERGE PROB 0.95 NSPEC,NGEN,NANY 0.0.2 FASTAN	ORIGIN DEFINING PHASES PERMUTED	0 0 8 1 3 3 6 8 1 2 9 7 2 10 2	33 315 (E)	360 33 275 67 95	CFOM 2: 1.8248	1.0082	406.7	32.35	36.7	32	36,41,45-48,69 1-9,11-13,15-18, 20-23,28,29,31-33, 36,38,39,41,59,70, 74
	NUMSET 32	PHASES	4 12 7	45,135,225,315	193	CFOM 3: 1.5159 PUBLISHED PHASES PUB REFINED BY FASTAN	1.0060 0.9105 1.0458	415.7 216.7 301.8	35.35 32.21 31.44	73.0 16.5* 22.1	-	
6	SIGMA-2 NUMB 402 NSRT 4000 NSRTOT 9372 CONVERGE 9708 PROB 0.95 NSPEC, NGEN, NANY 0.0.3 FASTAN NUMSET 128	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED PHASES	0 0 4 6 0 0 12 0 0 0 3 3 6 8 1 2 9 7 2 10 2 4 9 4 4 12 7	180, P=0.998 360, P=0.974 33 315 (E) 45,315 45,135,225,315 45,135,225,315	353	ALL 128: MAXIMUM MININUM CFOM 1: 2.0000 CFOM 2: 1.6281 CFOM 3: 1.6125 CFOM 4-127: 1.1589- 1.5858 CFOM 128: 0.5623 PUBLISHED PHASES PUB REFINED BY FASTAN	1.2384 0.8524 0.9386 0.9073 1.1994- 1.2384 0.9067 0.9105 1.0452	815.6 459.4 568.1 536.3 781.6- 815.6 665.3 216.7 300.0	42.70 36.18 36.18 38.07 38.22 39.27- 41.49 42.70 32.21 31.41			FAILURE
7	SIGMA-2 NUMB 402 NSRT 8000 NSRTOT 9372 CONVERGE 9762 PROB 0.95 NSPEC_NGEN_NANY 0.0.2 FASTAN 32	SIGMA-1 ORIGIN DEFINING PHASES PERMUTED PHASES	0 0 4 6 0 0 12 0 0 6 8 1 1 3 3 2 9 7 4 9 4 8 10 2	180, P=0.998 360, P=0.974 275 45 (E) 45,315 45,135,225,315	275 33 67 353	ALL 32: MAXIMUM MINIMUM CFOM 1: 2.0453 CFOM 1: 2.0453 CFOM 2: 1.9026 CFOM 6: 1.7107 CFOM 7: 1.5620 PUBLISHED PHASES PUB REFINED BY FASTAN	1.2163 0.8517 0.8682 1.2144- 1.2163 0.8517 0.8712 0.8634 0.9467	835.7 585.3 585.3 825.1- 835.7 590.5 630.1 223.7 284.6		75.7 57.3 69.7 67.6- 73.1 73.1 57.3 11.6 15.8		FAILURE
8	SIGMA-2 NUMB 402 NSRT 8000 NSRTOT 9372 CONVERGE 9372 PROB 0.95 NSPEC, NGEN, NANY 0.0,3 FASTAN 128	PHASES	2 9 7 4 9 4 8 10 2	180, P=0.998 180, P=0.998 360, P=0.994 275 45 (E)	360 180 360 275 33 67 353 300 355	CFOM 3: 1.8194 CFOM 4: 1.7977 CFOM 5: 1.6385	1.2230 0.8110 0.9698 0.9644 0.8343 0.8313 1.2222 0.8634 0.9466	523.1	46.43 36.20 36.68 38.63 38.75 40.34 24.16 24.15	73.0 73.4 74.7 76.5 68.2 11.6*	-	FAILURE
L		1	1	1	1,	L	L	ł	<u>ــــــــــــــــــــــــــــــــــــ</u>	L	<u> </u>	

Table 5. RR: $C_{26}H_{28}O_{12}$, $Pn2_1a$, Z=4, NAT=38

 φ (CALC) (the mean tangent formula phase shift) is given in Tables 2–7 for each value of NUMB and NSRT as the 'mean phase error' for the published phases, and marked by an asterisk. To provide true comparison with the results from *MULTAN*, when a phase is restricted to only two possible values, φ (PUB)- φ (CALC) is taken as zero [or 180°, if φ (PUB)- φ (CALC) exceeds 90°].

When not all the terms are included, the tangent formula still gives the most *probable* value for a phase,

estimated from the terms available, but as the number of terms omitted from the summation increases, the chance of the most probable value differing widely from the true value also increases. Thus the choice of NUMB must take into account another consideration. As NUMB increases for a given structure, the total number of Σ_2 relationships increases very rapidly, approximately as (NUMB)³. The amount of space available to store these in the computer is limited, storage space for the Σ_2 relationships forming the

			STARTIN	G SET		BE	SULTS		·	HEAN	E-MAPS	
CASE	PARAMETERS	ENAL		FIXED BY (E)		PHASE SET		RES OF ME	RIT	PHASE		CORRECT PEAKS
		TTPE	h k l	PHI	PUB	CONSIDERED	ABS FOM	PSI ZERO	RESID	ERROR	TOTAL	PEAK NUMBERS
	SIGMA-2	SIGMA-1	260	180, P=0.977	180	ALL 32: MAXIMUM	1.1123	352.4	36.26	86.4		
	NUMB 243	ORIGIN	345 0	360	360	MINIMUM	0.7283	151.1	18.88	9.2		
	NSRT 1999 NSRTOT 1999		139	315 (E)	311	CFOM 1: 2.7745	1.0257	151.1	18.88	9.2	25+13	1-13,15-18,20-25,
1	NSRTOT 1999 CONVERGE	PHASES	12 26 6	45,135,225,315	222			ļ			=38	27,29-33,39-41,46,
	PROB 0.95	PERMUTED		45,135,225,315	135	CFOM 2: 1.6568	0.9031	206.8	27.95	62.9		47,54,59,60,62
	NSPEC, NGEN, NANY 0.0.	PHASES	13 3 0	360,180	180	CFOM 3: 1.6221	0.8909	204.9	28.16	66.5	- 1	
	FASTAN					PUBLISHED PHASES	0.9662	138.6	19.96	8.4.	1	
	NUMSET 32					PUB REFINED BY FASTAN	1.0267	151.7	19.12	9.3		
	SIGMA-2	SIGMA-1	260	180, P=0.977	180	ALL 16: MAXIMUM	1.0823	452.9	43.70	87.2		
	NUMB 390	ORIGIN	345 0	360	360	MINIMUM	0.7655	187.0	37.31	70.8		
	NSRT 2000		139	315 (E)	311	CFOM 1: 2.0671	0.8981	231.6	38.48	70.8	1 -	
2	ONVERGE 7558	PHASES	0.70.0	7/0 480	100	CFOH 2: 2.0356	1.0823	443.5	37.31	85.3	-	
- ۲	PROB 0.9	PERMUTED	0302	360,180 45,135,225,315	180 222	CFOM 3: 1.9019 CFOM 4: 1.8820	0.9430	268.5	39.55 39.79	86.9	=	FAILURE
	NSPEC, NGEN, NANY 0,0,		12 36 0	360,180	360	CFOM 5: 1.8548	1.0685	452.9	37.96	84.6	1 -	
	FASTAN					PUBLISHED PHASES	0.9453	172.3	36.31	16.5*	1	
1	NUMSET 16	5				PUB REFINED BY FASTAN	1.0039	179.9	35.22	20.5		
	SIGMA-2	STOWA -	260	180 0 000	400	ATT Che MANTIMU	1 4/10	E20 2	1.5	100 0	1	
	NUMB 390	ORIGIN	260	180, P=0.977 360	180 360	ALL 64: MAXIMUM MINIMUM	1.1610	520.2 171.8	45.33	89.7	1	1
	NSRT 2000		1 3 9	315 (E)	311	CFOM 1: 2.0822	0.9054	246.6	37.68	71.2	1 -	1
	NSRTOT 755				1	CFOM 2: 2.0407	1.0877	443.1	37.07	84.9	-	
3	CONVERGE	_	0 30 2	360,180	180	CFOM 3: 2.0078	0.9418	265.9	38.57	86.7	- 1	FAILURE
	PROB 0.9 NSPEC, NGEN, NANY 2.0.		12 26 6 12 36 0		222	CFOM 4: 1.9683	0.9342	267.2	38.71	87.1	-	
	NSPEC, NGEN, NANY 2,0, FASTAN	F FAX3265	12 36 0	360,180 45,135,225,315	360	CFOM 5: 1.9611 PUBLISHED PHASES	0.9453	448.3	36.31	16.5	1 -	
	NUMSET 6	FI .	1		η···	PUB REFINED BY FASTAN		179.9	35.19			
					+		+		+			
	SIGMA-2 NUMB 390	SIGMA-1 ORIGIN	260		180	ALL 32: MAXIMUM MINIMUM	1.2568	787.3	40.55	89.7		
	NUMB 390 NSRT 4000		3450	100	360 311	CFOM 1: 2.0052	0.7681	309.2	34.73	71.8	1_	
	NSRTOT 755		. , ,		P''	CFOM 2: 1.8753	0.8295	375.7	35.37	71.8	1 -	
4	CONVERGE		202		360	CFOM 3: 1.8422	0.7681	335.8	35.32	86.7	- 1	FAILURE
	PROB 0.9	PERMUTED	3 15 2	45,135,225,315	5 135	CFOM 4: 1.8256	1.2568	787.3	35.74	88.4	-	
1	NSPEC, NGEN, NANY 0.0, FASTAN	5 PHASES	3 1 6	45,135,225,315	5 111	CFOM 5: 1.8139 PUBLISHED PHASES	0.7829	212.6	35.99	86.2	- 1	
	NUMSET 3	5				PUB REFINED BY FASTAN		234.4	26.80			
j		-		ļ	+		+	+	+			
1	SIGMA-2	SIGMA-1	260		180	ALL 64: MAXIMUM	1.2603	787.2 284.2	41.72			
	NUMB 39 NSRT 400		3450		360 311	CFOM 1: 2,1294	0.6650	330.6	35.20	71.0	1 _	
	NSRT 400 NSRTOT 755		1 2 9	5,5 (5)	1	CFOM 2: 2.0256	0.7799	329.6	35.70		-	
5	CONV-RUE		0 12 7		180	CFOM 3: 1.9908	0.7847	346.6	35.76	168.3	-	
	PRCB 0.9		0 46 6		180	CFOM 4: 1.9606 CFOM 5: 1.9427	0.8190	381.7	35.88	74.5	1 -	
	NSPEC, NGEN, NANY 2,0, FASTAN	2 PHASES		45,135,225,31		CFOM 6: 1.9058	0.7839	328.6	35.57 36.54	82.4	1 2	1
	NUMSET 6	F -1			7	CFOM 7: 1.8966	0.7570	326.8	36.33	90.0	-	
1				1	1	CFOM 8: 1.8910	0.7278	306.6	36.31	41.7	21+11	1-19,21,23,26,31,
1				1				1	1		=32	33,34,36,39-41,43, 48,73
		1		1		CFOM 9: 1.8894	0,9658	509.6	36.29	87.7	1 -	
1		1	1			PUBLISHED PHASES	0.9637	212.6	26.27	10.0*	1	
1						PUB REFINED BY FASTA	1.0117	234.3	26,80	10.9		I
—	+		1	1 490 0 0 0 0	1000	ATT Che MANTATIN	1.1576	8:1.5	41.72	90.5		
1	SIGMA-2	SIGMA-1 O ORIGIN	2 6 0		180	ALL 64: MAXIMUM MINIMUM	0.6478	320.0	33.42		1	
1	NUMB 39 NSRT 755		1 3 9		311	CFOM 1: 2.1433	0.8968	489.6	33.42	90.1	1 -	
1	NSRTOT 755					CFOM 2: 2.0463	0.8878	528.0	33.43	87.5	-	FAILURE
6	CONVERGE	-		45,135,225,31	5 222	CFOM 3: 1.8094	1.0021	556.2	36.78		1 :	FAILURE
1	PROB 0.9		4 2 5		5 115 5 135	CFOM 4: 1.8004 CFOM 5: 1.7859	0.9983	567.3 568.0	36.80	90.5	1 -	
1	NSPEC, NGEN, NANY 0.0, FASTAN		2 12 4		1,00	PUBLISHED PHASES	0.9805	214.8	17.79	7.1	· 1	
1	NUMSET 6	4		1		PUB REFINED BY FASTA	N 1.0199	232.7	18.29	8.2		
				190 D 0 000	180	ALL 64: MAXIMUM	1.3734	805.1	42.28	3 90.9		
1	SIGMA-2	SIGMA-1			180		0.7349	366.4	31.16	59.4		
1	NUMB 39 NSRT 755		3 45 0		311	CFOM 1: 2.0145	0.7571	375.2	31.16	70.5	1 -	
1	NSRTOT 755					CFOM 2: 2.0018	0.7550	366.4	31.49		-	PATT HDP
7	CONVERGE			45,135,225,31	5 222	CFOM 3: 1.9334	0.7530	382.3 488.9	31.82 32.52		1 :	FAILURE
1	PROB 0.9			360,180	180		0.8959	400.9	34.52		1 -	
1	NSPEC, NGEN, NANY 2,0,	2 PHASES	3 15 2	45,135,225,31 360,180	5 135		0.9805	214.8	17.79	7.1	7	
1	FASTAN NUMSET 6	74	1 0 10	1 500,100	100	PUB REFINED BY FASTA	N 1.0199	232.7	18.29		1	1
L	NURBEL C		1	<u></u>					4		-	

Table 6. TPH: $C_{24}H_{20}N_2$, $C222_1$, Z=12, NAT = 26+13=39

major portion of the space required by the *MULTAN* program. Only the most reliable \sum_2 relationships, those with the largest κ , can be stored. The inability to store all the \sum_2 relationships unless their number is kept low means that not only does the user by his choice of *E* values define the structure to be solved but may also be forced to choose the particular set of probabilistic equations which will be used to solve it from among the complete set of existing equations. One may then ask, first, whether the partial set of equations relating the phases of the NUMB *E* values *has* a solution near the true solution, and second, if so, whether it is possible to arrive at it using the algorithms in *MULTAN*.

If not all the \sum_2 relationships can be stored, keeping the most reliable *relationships* is incompatible with being able to determine all *phases* equally well. The smaller E values will tend to have fewer of their \sum_2 relationships retained, and will therefore tend to be eliminated sooner during the convergence procedure and appear near the top of the convergence map. The fewer \sum_2 relationships retained, the worse will tend to be the determination of a given phase with the tangent formula; the tangent-formula phase shift defined above sets the limit on the accuracy possible with the terms which are included.

This is shown in Figs. 1–4 (LITH, MINA, RR, TPH respectively), where, for all the combinations of NUMB and NSRT investigated, the mean tangent formula phase shift is plotted *versus* decreasing magnitude of E, represented by code numbers denoting E magnitude ranking. Means were calculated

Table 7. AZET: $C_{21}H_{16}CINO$, $Pca2_1$, Z=8, NAT=24+24=48

						ig set		RE	SULTS			MEAN		E-MAPS
CASE	PARAMETERS	L				FIXED BY (E)		PHASE SET		RES OF ME		PHASE	CORRECT PEAKS	
			TYPE	h k	1	PHI	PUB	CONSIDERED	ABS FOM	PSI ZERC	RESID	ERROR	TOTAL	PEAK NUMBERS
	SIGMA-2 NUMB	240	SIGMA-1	0406		360, P=1.000 180, P=1.000	360 180	AIL 64: MAXIMUM MINIMUM	1.8106	477.8	33.65 27.54	72.4		FAILURE
		4046	ORIGIN	15 3		353	353	CFOM 1-57: 1.9672-	1.5235	473.7	27.54-	33.1 33.1-	1 _	PAILURE
			DEFINING	11 3	2	225 (E)	249	2.9861	1.8106	477.3	28.46			FOR TYPICAL E-MAPS
1	CONVERGE		PHASES	2 5	4	45,315	316	CFOM 58-64: 0.0000-	1.5235-	475.4-	33.00-		-	SEE BELOW
ſ		0.95		2 7	0	360,180	360	0.6773	1.5267		33.65		I	
ŀ	NSPEC, NGEN, NANY O FASTAN	,0,3	PERMUTED PHASES	98		45,135,225,315 45,135,225,315	52 288	PUBLISHED PHASES PUB REFINED BY FASTAN	1.3516	255.8	20.83	13.5	44	SEE BELOW
. t	NUMSET	64	FIRSTS	, , ,	7	······································	200	FUD REFINED DI FRAIRI	1.0101	4/4.0	27.04	55.5		
_	SIGMA-2		SIGMA-1	04		360, P=1,000	360	ALL 32: MAXIMUM	1.8116	632.7	46.40	80.3		
. [NUMB	300		0 6		180, P=1.000	180	MINIMUM	1.1814	490.3	35.42	39.6	1	FAILURE
		4000	ORIGIN DEFINING	17 3		23	23	CFOM 1-16: 1.9313-	1.8065-		35.42-		- 1	
2	NSRTOT CONVERGE	7425	PHASES	25		315 (E) 45,315	316 288	2.0351 CFOM 17-28: 1.5418-	1.8116		36.23			FOR TYPICAL E-MAPS SEE BELOW
- ²		0.95	FINOLO			360,180	360	1.6519	1.5724		37.44			SEE DELOW
			PERMUTED	82	0	360,180	180	CFOM 29-32: 0.7158-	1.1814-	490.3-	44.92-		- 1	
	FASTAN		PHASES	98	2	45,135,225,315	52	1.0554	1.2201	532.6	46.40		1	
	NUMSET	32		1				PUBLISHED PHASES PUB REFINED BY FASTAN	1.3748	316.5	28.50 35.45	15.4*	46	SEE BELOW
								FUB REFINED BI FASIAN		625.3			<u> </u>	
	SIGMA-2		SIGMA-1	04		360, P=1.000	360	ALL 32: MAXIMUM	1.8255	646.4	40.67	81.9	1	
	NUMB NSRT	300 7425	ORIGIN	17 3		180, P=1.000 23	180 23	MINIMUM CFOM 1-23: 1.9493-	1.2828	593.0	32.01	39.3	1_	FAILURE
	NSRTOT		DEFINING	2 5	- 4	315 (E)	316	2.0715	1.8255		32.49			FOR TYPICAL E-MAPS
3	CONVERGE		PHASES	7 2	0	180	180	CFOM 24-28: 1.2539-	1.5443-	631.1-	36.12-	73.7-	-	SEE BELOW
		0.95		2 7	0	360,180	360	1.2943	1.5449		36.30			
		0,0,3	PERMUTED PHASES	98				CFOM 29-32: 0.9478-	1.2828-	593.0- 598.5	39.59-		-	
	FASTAN	32	PHASES	3 1	2	45,135,225,315	67	1.1378 PUBLISHED PHASES	1.3001	316.4	40.67	81.9	46	SEE BELOW
	NULDEL	~						PUB REFINED BY FASTAN		642.4	31.95	38.5	10	SEE DELO.
	SIGMA-2		SIGMA-1	04	0	360, P=1.000	360	ALL 64 NOT DEVELOPEL	- 10	- 1	-	-		
	NUMB	400		06		180, P=1.000	180	STARTING SET PHASES		1			1	
		8000	ORIGIN	17 3		23	23	CLOSEST TO THEIR	1.8305	897.9	39.66	45.2	-	FAILURE
4	NSRTOT 1 CONVERGE	6274	DEFINING PHASES	93		315 (E) 180	288	PUBLISHED VALUES PUBLISHED PHASES	1.3937	445.7	31.16	14.0*	24+23	1-19,21-32,34-37,
1		0.95	110,520	2 7		360,180	360		1.000	, . ,	10.00	14.0	=47	39,40,42,43,46,48,
			PERMUTED	8 2	0	360,180	180						- "	50,56,58,60,61,67
1	FASTAN		PHASES	25	4	45,135,225,315								(1,2=01)
	NUMSET	64		98	2	45,135,225,315	52	PUB REFINED BY FASTAN	1.8295	895.6	39.43	39.1		
	R	ESULTS				TEAN		· · · · · · · · · · · · · · · · · · ·		AL E-MAPS				
CASE	PHASE SET		URES OF MI			PHASE			CORRE	CT PEAKS				
	CONSIDERED	ABS FO	M PSI ZER	J RESI	נןפ	ERROR TOTAL				PEAK NUM	BERS			
	CFOM 1: 2.9861	1.8098	473.7	27.6	1	37.0 14+13=27	1-5.	7,9,19,21,24-27,29,37,	43.44.46	.52-54.60	.64.65.	70.84.9	90	(1,2=C1)
1	CFOM 2: 2.9814	1.8095	473.7	27.5	4 3	53.7 16+14=30	1-6.	8,11,15,20,21,25,30,33	3,35,36,3	8.46-49.5	3.58.72	.73.75	77.80.	90.96 (1.4=C1)
		1.8100		27.7	<u> </u>	58,5 14+12=26	1-4,	6,7,11,14,20,24,25,27, 17-19,22-24,26-29,31-	31,32,35	37.39.50	· <u>52.53</u>	60,62,7	70,76,7	7,95 (1,2=C1)
	PUBLISHED PHASES	1.3516	255.8	20.8	2	13.5° 24+20=44	1-15	,17-19,22-24,26-29,31-	•55,37,39	,41,44,46	-48,50,	51,54-5	56,58,6	7,69,93 (1,2=01)
		1.8105		35.42	2 4	17+10=27	1-4,	7,8,10,11,19,25,26,28,	31-33,39	,46,52,59	,60,62,	65,66,7	72,73,9	
2		1.8111		35.4	3 4	13.5 14+ 9=23	1,2,	4,7,8,11,17,18,26,30,3	3.37,40,	42,45,49	52,55,5	6,63,68	8,93,95	
		1.8109 1.3748		28.5		11+ 9=20	1.2.	4,6,8,9,13,16,18,23,32 ,14,16-18,20,22,30,33,	35, 37 40	-45 47 40	50 57	56-50 5	Ro 84 0	(2,18=C1) 6 (1,2=C1)
				-			+							·····
		1.8242	642.4	32.0		1.8 14+13=27	1-3,	5,7,11,14,15,19,23,25,	28,31,32	,36,38,43	,44,49,	54,57,6	57,69,7	1,72,84,85 (2,3=01)
3		1.8246		32.0	? ;			13,17,21,33-35,39,40,4 4,5,8,9,12,14,15,17,30					02.05	(2,4=C1)
2	CFOM 3: 2.0607													(2,5=01)
	PUBLISHED PHASES	1.3464	1 316.4	22.6	714	13.70 23+23=46	11-12		35.37.40	-45 47 40	1.50.54	56-59 /	52.86 0	ורים – 6
		1.3464	-	22.6			+	,14,16-18,20,22-30,33,					52,86,9	6 (1,2=C1) (1,2=C1)

for overlapping batches of 20 reflexions. For sets of complete \sum_2 relationships, the phase shift is small and relatively uniform with decreasing |E| and up the convergence map. As the number of \sum_{2} relationships is restricted, the phase shift tends to increase with decreasing |E| and towards the top of the convergence map. The phases at the top of the convergence map, although they may be far from correct, are recycled and used in refining already determined phases at the bottom of the map. It is not hard to see how this process could lead to divergence of the entire phase set from approximately correct values, even though the initial phase development may have been quite accurate. On the other hand, if the initial phase development is only moderately good, having sufficient \sum_{2} relationships may allow a better chance of refinement to quite accurate phases, with the phase errors distributed roughly evenly among all the reflexions.

The user's aim should therefore be, according to the size of the structure to be solved and the computer storage available, to use only as many E values as necessary but as many \sum_{2} relationships as possible, preferably all. This is the only way with the algorithms presently in the MULTAN program to ensure that the ratio of \sum_{2} relationships to E values is as uniform as possible and thus that the tangent formula phase shift is as low and as uniform as possible. One should avoid having convergence maps with long narrow tails at the top, since adding to the number of E values without being able to use the equations necessary to determine their phases at all well may not improve the definition of the structure in the Fourier map but only increase the noise, and actually yield diminishing returns. The various cases in Tables 3-6 (LITH, MINA, RR, TPH respectively) show the increased *likelihood* of success when the set of \sum_{2} relationships used is complete or at least reasonably large, which can be achieved either by increasing NSRT or by decreasing NUMB, when possible.

This approach is fundamental to the intelligent use of *MULTAN*. Structures may be and quite often are solved when the parameters NUMB and NSRT are not ideal, but in case of failure, improving the choice of these two parameters may be the best first change to make, and they should be kept at sensible values to form a reliable basis for any other attempts at changed or improved tactics if these are required.

Because the convergence map differs, in general, for each different choice of parameters, the path of phase determination may in one case encounter a favourable and in another an unfavourable sequence of invariants. Thus a number of attempts at solution may often be necessary, and the user should not be discouraged too easily. Even with a fairly easily solvable structure like MINA, an 'unlucky' convergence map led to failure in the initial attempt (Table 4, case 2) while all other choices of parameters yielded the solution. More difficult structures, like RR (Table 5) and TPH (Table 6), clearly present more formidable obstacles to be got round, and most attempts at solving them failed, but even these two structures eventually yielded to persistence.

Other tactics: acceptance of \sum_{1} indications

Occasionally a \sum_1 phase indication of high probability is incorrect. For *E*-set 1 of INOS, the \sum_1 formula, with two contributors among the largest 260 *E* values, indicates that the phase of 008 is 360° with probability 0.999, but this is incorrect, and is an obstacle to correct phase determination (Table 2, case 1). If PROB is raised to 1.0 (Table 2, case 2), this false \sum_1 indication is not accepted, and 008 no longer appears in the starting set. \sum_2 invariants of 180° still prevent a completely successful phase determination, but now the set

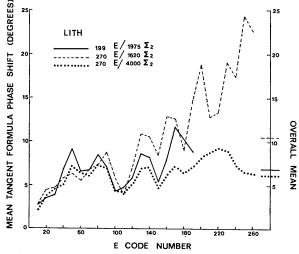


Fig. 1. LITH: mean tangent formula phase shift vs. decreasing |E|.

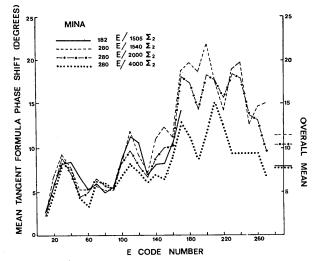


Fig. 2. MINA: mean tangent formula phase shift vs. decreasing |E|.

with the highest CFOM gives an image of the structure in the *E* map, displaced from its correct position by an average $\Delta y = -0.33$. This must be counted a partial success, since there are several procedures for finding the correct positions of molecules once their orientations are known. Two similar recent instances which may be cited are those of avicennin (C₂₀H₂₀O₄, *P*I, *Z*=2) (Ting & Marsh, 1974), with an incorrect Σ_1

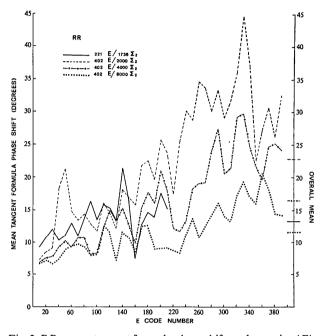


Fig. 3. RR: mean tangent formula phase shift vs. decreasing |E|.

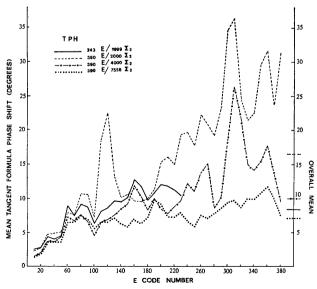


Fig. 4. TPH: mean tangent formula phase shift vs. decreasing |E|.

A C 32A – 2*

indication of probability 0.98, and of diphenyl- d^2 pyrazoline (C₁₅H₁₄N₂, P2₁/c, Z=4) (Duffin, 1968; Gassman & Zechmeister, 1972), with an incorrect \sum_1 indication of probability 0.97. In both these cases the *E* maps showed multiple shifted images of the structure.

There is of course no simple way of knowing whether a \sum_{1} indication is correct or not. If examination of the convergence map shows that a phase accepted from a \sum_{1} indication enters in an important way into the early stages of phase determination, then the tactical choice of PROB can be a significant one. Increasing PROB and not accepting some \sum_{1} indication can help if the indication is wrong, but may hurt if it is right; one can only attempt the phase determination both ways and see.

Other tactics: increasing the starting set

An evident tactical change in case of failure is to take more unknown phases, to be permuted, into the starting set. This was successful with INOS (Table 2, cases 5 and 6 vs. cases 3 and 4), LITH (Table 3, case 3 vs. case 2, case 5 vs. case 4), MINA (Table 4, case 3 vs. case 2), and, to a lesser extent, TPH (Table 6, case 5 vs. case 4). At first sight, the increased chance of success might seem to be only a matter of increasing the amount of phase information at least approximately known at the outset, and increasing the constraints on phase development, since the starting-set phases are kept fixed until the final cycles of phase determination and refinement. Very often this is indeed what happens, but in general the phase determining process with MULTAN can be rather more complex than that.

It is not true that the starting set with phases closest to their true values is always the one which develops into the correct solution. This is because the invariants encountered in the convergence map, even toward the beginning, may differ substantially from zero. Multisolution numerical phase development makes a certain allowance for this (albeit in a somewhat haphazard way), since permutation of the values assigned to unknown phases in the starting set amounts to the exploration of a range of possibilities for the structure invariants. An accurate starting set may diverge from the correct solution, while a fairly poor starting set, because of the distribution of invariants encountered in the course of phase development, may finally converge to the correct set of phases. This makes the permutation strategy more powerful than is at first evident, and happens often enough to make it the strongest single argument in favour of the numerical multisolution approach as opposed to symbolic addition (Karle & Karle, 1966).

The reasons why adding more unknown phases to the starting set increases the chances of success should now be clear. However, any change in NSPEC, NGEN, NANY will in general alter the convergence map and thus change the path of phase development which it determines. This means that occasionally a phase determination with *fewer* reflexions in the starting set will succeed while one with *more* reflexions will fail, as happened with RR (Table 5, case 5 vs. case 6).

The previous discussion of the choice of NUMB and NSRT is relevant as well to a consideration of practical limitations on increasing the number of unknown phases in the starting set. The time necessary to run the MULTAN program consists of a relatively short block used in finding the \sum_2 relationships and performing the convergence mapping plus a generally much longer block used in developing all phase sets with FASTAN. The length of this second block is proportional to NUMSET, and the time needed for each phase set is proportional to NSRT. Therefore, if NSRT is to be a large fraction of NSRTOT, as it should, the choice of a smaller NUMB allows a greater number of unknown reflexions to be added to the starting set before practical limitations on computing time are reached. Choice of a smaller NUMB thus makes MULTAN a more powerful program in practical terms.

NUMSET increases by a factor of four for each general reflexion and two for each special reflexion added to the starting set, so the user can also take advantage of special circumstances to increase the size of the starting set while keeping NUMSET within reasonable bounds. When a phase determination fails for a structure like TPH, space group $C222_1$, having large numbers of special reflexions with high E values, the user can specify that reflexions added to the starting set be special. This is shown in Table 6, where case 4, NANY = 3, NUMSET = 32, is a failure, whereas case 5. NSPEC = 2, NANY = 2, NUMSET = 64, gives one phase set for which most of the asymmetric unit is easily recognizable in the E map, and from which the complete structure is readily found. This case incidentally illustrates the practical importance of being able rapidly to compute, examine, and interpret large numbers of E maps (Declercq, Germain, Main & Woolfson, 1973; Koch, 1974). The best set in case 5 still has significantly large phase errors in it (mean phase error 41.7°), and its astonishingly low ABS FOM places it eight in CFOM ranking, for which reasons it could easily have been overlooked if computing and examining E maps were a lengthy and tedious operation.

The difficulty in solving RR clearly illustrates the practical limits on the tactical choice of increasing the starting set which arise from the strategy of independently permuting the phases of the unknown starting reflexions. Because there are very few special reflexions with large E values for RR, for sensible phase development not only must all the unknown phases in the starting set be general (each new one taken multiplying NUMSET by a factor of four), but the origin must be defined using three general reflexions as well.

One of these can be assigned an arbitrary phase, the second can have its phase restricted to define the origin and enantiomorph, but the third must be given *two* values to ensure that one of the values corresponds to the enantiomorph defined by the second phase. Thus, with the origin defined in this manner, to have just three unknown phases in the starting set for RR requires the development of 128 phase sets, which is a large computing job. If such an attempt fails, as in fact it did (Table 5, cases 2, 4, 6, 8), a decision to add one more unknown phases, a number impracticable for most users.

An improved strategy which has been developed to overcome the limitations of independent permutation of unknown phases is the 'magic integer' technique (White & Woolfson, 1975; Declercq, Germain & Woolfson, 1975). This is a method of correlating the values of the unknown phases with \sum_2 relationships and then choosing only those sets of values which best satisfy the requirement that these \sum_{2} invariants be near zero. When only the most likely combinations of the unknown phases are selected in this way, a much larger number of phases, say 10-30 or more, can be used while keeping NUMSET about the same as it would be using only three or four independently permuted phases in the present version of MULTAN. The 'magic integers' strategy is therefore in general more powerful than the independent permutation strategy.

The inadequacy of the tangent formula: an ultimate limitation on the *MULTAN* strategy

Examination of the results of attempts to solve the structure of AZET with MULTAN (Table 7) shows that to have any hope of a successful phase determination we require a third property of the defined struc-

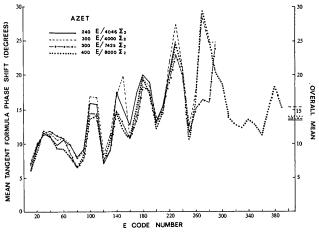


Fig. 5. AZET: mean tangent formula phase shift vs. decreasing |E|.

ture, namely, stability of the true phase set under tangent formula refinement. For AZET, the first two requirements are met. The structures defined with the 240, 300, and 400 largest E values (Table 7, cases 1, 2, and 4 respectively) are all readily interpretable in terms of the actual structure. Likewise, the mean tangent-formula phase shift for the published phases (Table 7, cases 1–4, and Fig. 5), which sets an absolute limit on the possible accuracy of phase determination, is quite low.

In practice, however, the actual limit of accuracy to be expected when phases are determined by *MULTAN* is given by a quantity listed for each case in the tables, the mean phase error resulting when the published phases are refined by *FASTAN*. This is borne out by examining all the successful phase determinations for the five structures previously discussed. For these structures, whether the phase determination was successful or not, in every case the mean phase error for PUB refined by *FASTAN* is only slightly higher than the mean tangent formula phase shift for PUB, and the figures of merit for the former remain close to those for the latter.

For AZET, however, this is not so. The published phases for AZET are simply unstable under the operations of FASTAN, and diverge from their true values to a mean phase error much higher than the mean tangent formula phase shift. The results from MULTAN are in fact as good as could be expected, but the best phase sets give very poor, fragmentary, and unrecognizable representations of the structure (Table 7, cases 1, 2, 3, typical E maps). Similar divergence of published phases refined by FASTAN is refor the potassium salt of alborixin ported $(C_{48}H_{83}O_{14}K, P2_1, Z=2)$ (Alléaume, Busetta, Farges, Gachon, Kergomard & Staron, 1975; Busetta, 1976). (Note that this behaviour cannot be ascribed merely to the presence of heavy atoms, since MULTAN routinely solves similar structures, sometimes with the heavy atom a larger fraction of the total scattering matter, as, for example, 2,4,6-trimethyldiphenyl sulphone ($C_{15}H_{16}O_2S$, $Pn2_1a$, Z=8) (Chawdhury, 1976). Note also that the two chlorine atoms in AZET do not in general show up as the highest two peaks in the E maps.)

There thus exist crystal structures which it is *impossible* to solve with MULTAN. Conceivably this is due to poor or not universally applicable tactics in *FASTAN*, but more likely it is because the fundamental MULTAN strategy, use of the tangent formula for phase determination and refinement, is inadequate (*cf.* Gassman & Zechmeister, 1972). To revise MULTAN we must seek other phase-determining strategies which contain constraints to prevent instability of the sort seen with AZET, which can be programmed and made automatic, and which we would like to be not excessively costly in computer time compared with the rapid and convenient tangent formula.

Future strategies

Several more powerful general phase-determining formulae have been proposed. Extended tangent formulae, containing quartet structure invariants, of the form

$$\tan \varphi_{\mathbf{h}} = \frac{\sum_{\mathbf{k}} w_{\mathbf{h}\mathbf{k}} \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}}) + \sum_{\mathbf{k}} \sum_{\mathbf{l}} w_{\mathbf{h}\mathbf{k}\mathbf{l}} \sin (\varphi_{\mathbf{k}} + \varphi_{\mathbf{l}} + \varphi_{\mathbf{h}-\mathbf{k}-\mathbf{l}})}{\sum_{\mathbf{k}} w_{\mathbf{h}\mathbf{k}} \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}}) + \sum_{\mathbf{k}} \sum_{\mathbf{l}} w_{\mathbf{h}\mathbf{k}\mathbf{l}} \cos (\varphi_{\mathbf{k}} + \varphi_{\mathbf{l}} + \varphi_{\mathbf{h}-\mathbf{k}-\mathbf{l}})}$$

can be derived from (a) requiring that the integral of the square of the difference between the squared defined structure and the defined structure, properly scaled, be a minimum (Allegra & Colombo, 1974); (b) considering the conditional probability distribution of the quartet structure invariant given the magnitudes of the four E values (Hauptman, 1975*a*, *b*); or (c) applying the maximum determinant rule (Tsoucaris, 1970) to an order-4 Karle-Hauptman matrix (Main, 1975).

The maximum determinant rule can of course be applied to matrices of increasingly high order, and expressed as a general *n*th-order tangent formula (de Rango, Tsoucaris & Zelwer, 1974; Mauguen, de Rango & Tsoucaris, 1973). Higher-order phasedetermining formulae of quite general types can also be formulated conveniently by considering the process of phase correction in direct space (Gassman & Zechmeister, 1972). The approach in all these cases is to develop more powerful phase relationships among the large E values defining the structure.

A different tack, however, is strongly suggested by the behaviour of the figures of merit when the published phases are refined by FASTAN, compared with the values for the published phases themselves. For both AZET and the potassium salt of alborixin (Busetta, 1976) this leads to a most unusually large absolute figure of merit, coupled with a greatly increased ψ_0 figure of merit. In other words, application of the tangent formula drives the true phases to values which make the \sum_{2} relationships among the largest E values very consistent, the invariants much more narrowly distributed about zero than they in fact are, at the expense of failing to satisfy nearly as well the Sayre's equations for the smallest E values, which are used only to calculate ψ_0 but not for phase development itself. The most promising future strategies for MULTAN might thus be methods which could incorporate the smallest E values into the phase development procedure in a way which would constrain the phases of the largest E values. This would use more of the complete data set, in such a way as to impose on the defined structure the additional requirement of a correspondence to properties of the actual structure more strict and of a different kind than simply a reasonably good 1:1 match of the largest peaks.

The basis of one such approach, the use of quartets with probably negative cosines, has recently appeared (Hauptman, 1975a, b). From a consideration of conditional probability distributions involving seven structure factors, Hauptman has shown that a quartet structure invariant may be distributed about any value between 0° and 180°, depending on the magnitudes of both the four E values of the quartet and the three Evalues of the cross terms. In particular, the larger the former and the smaller the latter, the more narrowly the quartet is distributed about 180°, in sharp contrast to the prediction of a distribution with a maximum always at 0° when only the four magnitudes of the quartet are considered. Taking into account the smallest E values thus clearly does change the relations which the phases of the largest E values must satisfy, and would constrain the phase development if these 'negative quartets' were incorporated into the procedure. It seems likely that in the immediate future at least some improvements in phase development procedures will occur along these lines.

I would like to thank Professor Michael Woolfson, Dr Peter Main, and Dr Gabriel Germain for their interest and encouragement in this work. Data for analysis were kindly provided for INOS by Dr D. A. Langs, Medical Foundation of Buffalo, and Professor H. C. Freeman, University of Sydney; for LITH by Dr S. K. Arora and Professor R. B. Bates, University of Arizona; for MINA by Dr F. Plana, University of Barcelona; for RR by Dr H. Henke, University of Karlsruhe; for TPH by Dr A. Hoekstra, University of Groningen; and for AZET by Mr A. Colens, University of Louvain. The financial support of the Science Research Council is gratefully acknowledged.

References

- ALLÉAUME, M., BUSETTA, B., FARGES, C., GACHON, P., KERGOMARD, A. & STARON, T. (1975). Chem. Commun. pp. 411–412.
- ALLEGRA, G. & COLOMBO, A. (1974). Acta Cryst. A30, 727-729.
- ARORA, S. K., GERMAIN, G. & DECLERQ, J. P. (1976). Acta Cryst. B 32, 415-419.
- BUSETTA, B. (1976). Acta Cryst. A 32, 139-143.

- CHAWDHURY. S. A. (1976). Acta Cryst. B32, 1069-1073.
- COLENS, A., DECLERCQ, J. P., GERMAIN, G., PUTZEYS, J. P. & VAN MEERSSCHE, M. (1974). Cryst. Struct. Commun. 3, 119–122.
- DEBYE, P. (1915). Ann. Phys. (Leipzig), 46, 809-823.
- DECLERCQ, J. P., GERMAIN, G. & HENKE, H. (1973). Cryst. Struct. Commun. 2, 405–409.
- DECLERCQ, J. P., GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1973). Acta Cryst. A29, 231-234.
- DECLERCQ, J. P., GERMAIN, G. & WOOLFSON, M. M. (1975). Acta Cryst. A31, 367-372.
- DUFFIN, B. (1968). Acta Cryst. B24, 1256-1261.
- FONT-ALTABA, M., MIRAVITLLES, C., BRIANSO, J. L., PLANA, F. & SOLANS, X. (1976). Acta Cryst. To be published.
- FREEMAN, H. C., LANGS, D. A., NOCKOLDS, C. E. & OH, Y. L. (1976). In preparation.
- GASSMAN, J. & ZECHMEISTER, K. (1972). Acta Cryst. A28, 270–280.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–285.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A 27, 368-376.
- GERMAIN, G. & WOOLFSON, M. M. (1968). Acta Cryst. B24, 91–96.
- HAUPTMAN, H. (1975a). Acta Cryst. A31, 671-679.
- HAUPTMAN, H. (1975b). Acta Cryst. A31, 680-687.
- HOEKSTRA, A., VOS, A., BRAUN, P. B. & HORNSTRA, J. (1975). Acta Cryst. B31, 1708–1715.
- KARLE, J., HAUPTMAN, H. & CHRIST, C. L. (1958). Acta Cryst. 11, 757-761.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859.
- Косн, М. Н. J. (1974). Acta Cryst. B30, 67-70.
- MAIN, P. (1975). Private communication.
- MAIN, P., WOOLFSON, M. M., LESSINGER, L., GERMAIN, G. & DECLERCQ, J. P. (1974). MULTAN 74, A System of Computer Programmes for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data.
- MAUGUEN, Y., DE RANGO, C. & TSOUCARIS, G. (1973). Acta Cryst. A 29, 574-575.
- Mo, F., HJORTÅS, J. & SVINNING, T. (1973). Acta Cryst. A 29, 358–362.
- RANGO, C. DE, TSOUCARIS, G. & ZELWER, C. (1974). Acta Cryst. A30, 342-353.
- ROBERTS, P. J., BRAUER, D. J., TSAY, Y. -H. & KRÜGER, C. (1974). Acta Cryst. B30, 2673–2678.
- TING, F. L. & MARSH, R. E. (1974). Acta Cryst. B30, 1570– 1575.
- TSOUCARIS, G. (1970). Acta Cryst. A 26, 492-499.
- WHITE, P. S. & WOOLFSON, M. M. (1975). Acta Cryst. A31, 53–56.